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What is task parallelism?

» like most CS terms, the definition is vague
» [ don’t consider contraposition “data parallelism vs.
task parallelism” useful
» imagine lots of tasks each working on a piece of data
> 1s 1t data arallel or task arallel7

» let’s instead ask:
» what’s useful from programmer’s view point
» what are useful distinctions to make from
implementer’s view point
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1. a logical unit of concurrency (that is, g ;
a task) can be created dynamically,

at an arbitrary point of execution,
2. and cheaply;

3. and they are automatically mapped
on hardware parallelism (cores,
nodes, .. .)

4. and cheaply context-switched




What are they good for?

» generality: “creating tasks at arbitrary points” unifies
many superficially different patterns
» parallel nested loop, parallel recursions
» they trivially compose
» programmability: cheap task creation 4 automatic
load balancing allow straightforward,
processor-oblivious decomposition of the work
(divide-and-conquer-until-trivial)
» performance: dynamic scheduling is a basis for hiding
latencies and tolerating noises

)



Our goal

» programmers use tasks (+
higher-level syntax on top) as
the unified means to express p
parallelism 3
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» the system maps tasks to ﬁlﬁé
hardware parallelism

» cores within a node
» nodes
» SIMD lanes within a core!




Rest of the talk
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Compiler Optimizations and Vectorization
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Taxonomy

» library or frontend: implemented with ordinary C/C++
compilers or does it heavily rely on a tailored frontend?

» tasks suspendable or atomic: can tasks suspend/resume
in the middle or do tasks always run to completion?

» synchronization patterns arbitrary or pre-defined: can
tasks synchronize in an arbitrary topology or only in
pre-defined synchronization patterns (e.g., bag-of-tasks,
fork/join)?

» tasks untied or tied: can tasks migrate after they
started?



Instantiations

library suspendable | untied sync

/frontend task tasks | topology
OpenMP tasks frontend yes yes fork/join
TBB library yes no fork/join
Cilk frontend yes yes fork/join
Quark library no no arbitrary
Nanos++ library yes yes arbitrary
Qthreads library yes yes arbitrary
Argobots library yes yes? | arbitrary
MassiveThreads library yes yes arbitrary




MassiveThreads

> https://github.com/massivethreads/massivethreads

» design philosophy: user-level threads (ULT) in an
ordinary thread API as you know it

» tid = myth create(f, arg)

» tid = myth_join(arg)

» myth_yield to switch among threads (useful for
latency hiding)

» mutex and condition variables to build arbitrary
synchronization patterns

» efficient work stealing scheduler (locally LIFO and
child-first; steal oldest task first)

» an (experimental) customizable work stealing
[Nakashima and Taura; ROSS 2013]
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https://github.com/massivethreads/massivethreads

User-facing APIs on MassiveThreads

» TBB’s task_group and
parallel_for (but with untied
work stealing scheduler)

» Chapel tasks on top of
MassiveThreads (currently
broken orz)

» SML# (Ueno @ Tohoku
University) ongoing

» Tapas (Fukuda @ RIKEN), a
domain specific language for
particle simulation

quicksort(a, p, @) {
if (@ - p < th) {
} else {
mtbb: :task_group tg;
r = partition(a, p, q);
tg.run([=]{ quicksort(a, p, r-1); });
quicksort(a, r, q);
tg.wait();
}
}

TBB interface on
MassiveThreads




Important performance metrics

» low local creation/sync overhead

» low local context switches

» reasonably low load balancing (migration) overhead
» somewhat sequential scheduling order

@ 1 | parent() {
2 T :

3 spawn { v: ... };
4

WD 2k

op measure what | time (cycles)

local create Ty — Y ~ 140

work steal To — 1 ~ 900

context switch | myth_yield ~ 80

(Haswell i7-4500U (1.80GHz), GCC 4.9)
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Comparison to other systems

clocks
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1 | parent() {

2 T

3 spawn { v: ... };
4

5

1+

}

Summary:
» Cilk(Plus), known for its superb local creation
performance, sacrifices work stealing performance
» TBB’s local creation overhead is equally good, but it is
“parent-first” and tasks are tied to a worker once
started
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Further research agenda (1)

» task runtimes for ever larger scale systems is vital

0



Further research agenda (1)

» task runtimes for ever larger scale systems is vital

» = “locality-/cache- /hierarchy- /topology-/whatever-
aware” schedulers obviously
important

0



Further research agenda (1)

» task runtimes for ever larger scale systems is vital

» = “locality-/cache- /hierarchy- /topology-/whatever-
aware” schedulers obviously
important

» = hierarchical/customizable schedulers proposals

0



Further research agenda (1)

» task runtimes for ever larger scale systems is vital

» = “locality-/cache- /hierarchy- /topology-/whatever-
aware” schedulers obviously
important

» = hierarchical/customizable schedulers proposals

» = yet, IMO, there are no clear demonstrations that
clearly outperform simple greedy work stealing over
many workloads

0



Further research agenda (1)

» task runtimes for ever larger scale systems is vital

» = “locality-/cache- /hierarchy- /topology-/whatever-
aware” schedulers obviously
important

» = hierarchical/customizable schedulers proposals

» = yet, IMO, there are no clear demonstrations that
clearly outperform simple greedy work stealing over
many workloads

» the question, it seems, ultimately comes to this:

when no tasks exist near you but some may
exist far from you, steal it or not (stay idle)?



Further research agenda (2)

» quantify the gap between hand-optimized
decomposition vs. automatic decomposition (by work
stealing); e.g.

» Space-filling decomposition vs. work stealing
» 2.5D matrix-multiply vs. work stealing

» both experimentally and theoretically
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Two facets of task parallelism in distributed
memory settings

» a means to hide latency, for which we merely need a
local user-level thread library supporting
suspend /resume at arbitrary points

» a means to globally balance loads, for which we need a
system specifically designed to migrate tasks across
address spaces

MassiveThreads/DM is a system supporting
» distributed load balancing and latency hiding

» + global address space supporting migration and
replication

V]
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Tasks to hide latencies

The goal:

» individual tasks look like
ordinary blocking access
(programmer-friendly)

» hide latencies by creating lots
of tasks

Ingredients for implementation:

» local tasking layer with good
context switch performance

» message/ RDMA layer with
good multithreaded performance

scan(global_array<T> a) {
for (i = 0; i < nj; i++) {
.= .. alil ..
}
}

scan(global_array<T> a) {
pfor (i = 0; i < n; i++) {
.= ..oalil .o
}
}

™)
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Preliminary results

» context switch: we used MassiveThreads’s myth_yield
function to switch context upon blocking

» message/ RDMA: we rolled our own thread-safe comm
layer (on MPI, on IB verbs, and on Fujitsu Tofu
RMA), partly because Fujitsu MPT lacks
multithreading support

1.4 x 10° ‘
. 6 | R
/x a[i] */ . 1.2 x 10. BRI
T get(address<T>) { 2 1 x 108 ! E

. . ~ = 3
1ssue non-blocking get(address); 3 800000 —F 5T
while (!the result available) { 2 600000 workers=1 i

h_yield(); > workers=2 +——<—
myt -yie ’ b 400000 //" workers=3 -
@ 200000 workers=4

return result; [ workers=>5 ]

} 0 | | | | | | | |
1 2 3 4 5 6 7 8 9 10

tasks



Taxonomy

» library or frontend
» tasks suspendable or atomic
» synchronization patterns arbitrary or pre-defined

» tasks untied or tied

» the main issue:
implementation complexity raises on
distributed memory especially for untied tasks

» that is, how to move tasks across address spaces?

o
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Instantiations

library suspendable | untied sync scale
/frontend task tasks topology

Distributed Cilk frontend yes yes fork/join 16
[Blumofe et al. 96]
Satin frontend yes no fork/join 256
[Neuwpoort et al. 01]
Tascell frontend yes yes fork/join 128
[Hiraishi et al. 09]
Scioto library no no BoT 8192
[Dinan et al. 09]
HotSLAW library yes no fork/join 256
[Min et al. 11]
X10/GLB library no no BoT 16384
[Zhang et al. 13]
Grappa library yes no fork/join 4096
[Nelson et al. 15]
MassiveThreads/DM library yes yes fork/join 4096
[Akiyama et al. 15]

o



MassiveThreads/DM

» global (inter-node) work stealing library

» usable with ordinary C/C++ compilers

» supports fork-join with untied tasks

» = moves native threads across nodes

/ :
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Migrating native threads

» problem: the stack of native threads has pointers
pointing to the inside

» migrating a thread to an arbitrary address breaks
these pointers

» = upon migration, copy the stack to the same address
(iso-address [Antoniu et al. 1999])
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Migrating native threads

» problem: the stack of native threads has pointers
pointing to the inside

» migrating a thread to an arbitrary address breaks
these pointers

» = upon migration, copy the stack to the same address
(iso-address [Antoniu et al. 1999])
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[so-address limits scalability

» for each thread, all nodes must reserve its address

» = a huge waste of virtual memory

virtual address space




[s consuming a huge virtual memory really a
problem?

» with high concurrency, it may indeed overflow virtual
address space

stack size x tasks depth X cores/node x nodes
214 X 213 X 28 X 213 — 248

» more important, the luxury use of virtual memory
prohibits using RDMA for work stealing (as RDMA
memory must be pinned)

» = proposed UniAddress scheme [Akiyama et al. 2015]

0



Further research agenda

» demonstrate global distributed load balancing with
practical workloads with lots of shared data

» “locality- /hierarchy-. ..” awareness are even more
important in this setting

» latency-hiding opportunity adds an extra dimension

» steal or not, switch or not

0
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Analyzing task parallel programs

» task parallel systems are more
“opaque” from users

| | I
create/wait task

runtime system

» task management, load

balancing, scheduling 002300
» they show performance differences ??
and researchers want to precisely 1 R
%0
understand where they come from ?'? 4
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DAG Recorder and DAGViz

» DAG Recorder runs a task
parallel program and extracts
its DAG, augmented with
timestamps, CPUs, etc.

» DAGViz is its visualizer

AQ) {
for(i=0;i<2;i++) {
mk_task_group;
create_task(B());
create_task(C());

D();
wait_tasks();

}

F();
wait_tasks();

}

[ begin_section
I\ create_task
W wait_tasks
O endrask

}

o() { E>
mk_task_group;
create_task(E());




Why record the DAG?

» DAG is a logical representation of the program
execution independent from the runtime system
» you can compare DAGs by two systems side by side
» DAG contains sufficient information to reconstruct
many details
» work and critical path (excluding overhead)
» actual parallelism (running cores) along time
» available parallelism (ready tasks) along time
» how long each task was delayed by the scheduler

0



Seeing is believing.
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Challenge : reducing space requirement

» literally recording all subgraphs is
prohibitive
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Challenge : reducing space requirement

» literally recording all subgraphs is
prohibitive

» collapse “uminteresting” subgraphs
into single nodes

» current criteria: we collapse a
subgraph <=
1. its nodes are executed by a single

worker,
2. its span is smaller than a %)gl
(configurable) threshold S

(O endtask



Ongoing work

» hoping to use this tool to automate discovery of issues
in runtime systems

» scheduler delays along a critical path
» work time inflation

» shed light on “steal or not” trade-offs

0
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Motivation

» task parallelism is a friend of divide-and-conquer
algorithms

» divide-and-conquer makes coding “trivial,” by dividing
until the problem becomes trivial

» matrix multiply, matrix factorization, triangular solve,
FFT, sorting, ...

» in reality, the programmer has to optimize leaves

manually

» why? because we lack good compilers



The power of divide-and-conquer

/x C += AB x/

/* quick sort */ mm(A, B, C) {
quicksort(a, p, q) { if (JAl=1&& |B|=1
if (—p<2){ L& |l =1) {
return; Coo += Ago - Boo;
} else { } else {
} }
} }
/* FFT =/ /* triangular solve
fit (n, z) { LX =B. %/
if (n=1){ trsm(L, B) {
return zo; if (M=1) {
} else { B /= li1;
} else {
} }

}

/# Cholesky factorization */
chol(A) {
if (n=1){
return (\/a11);
} else {

-
}

They all admit
“trivial” base case,
only if performance is
acceptable . ..



Static optimizations and vectorization of tasks

» goal: run straightforward task-based programs as fast
as manually optimized programs

» write once, parallelize everywhere (nodes, cores, and
vectors)
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Static optimizations and vectorization of tasks

» goal: run straightforward task-based programs as fast
as manually optimized programs

» write once, parallelize everywhere (nodes, cores, and
vectors)

serialized and vectorized
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What does our compiler do?

1. static cut-off statically eliminates task creations
2. code-bloat-free inlining inline-expands recursions

3. loopification transforms recursions into flat loops (and
then vectorizes it if possible)



~

Static cut-off

1 f(avba"‘) { 1 fseq(avby"') {

2 if (B) { 2 if (BE) {

3 L(a,b,--) 3 L(a,b,---)

4 } else { 4 } else {

6 spavn f(a1,b1,---); = 6 fseq(a1,b1,--+);
7 7

8 spawn f(az, b2, -); 8 fseq(az,b2,--+);
9 9

0 b 10 }

1]} 11 |}

key: determine a condition Hy, in which the
height of recursion from leaves < k

» Hy=FE

» Hy 1 = FE or Vi(a;,b;, -+ ) satisfy Hy,
when succeeded, generate code that statically
eliminate all task creations




Code-bloat-free inlining

» under condition Hy, inline-expanding all recursions k
times would eliminate all function calls

» but this would result in an exponential code bloat
when the function has multiple recursive calls

» code-bloat-free inlining fuses multiple recursive calls
into a single call site

1 |for (i = 0; i < 2; i++) {
s 2| switch (i) {
2 flai,bi,--+); 3 case 0: ---
3 = 4 case 1: ---
4 flaz,b2,---); 5 }
5 6 |  flaibi,-);
7|}

0
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Loopification

~ D © % N LA e~

fseq(a,b,--+) {
if (B) {
L((Z,b,“')
} else {

fseq(alvbh o ');
fseq(az, b2,--+);

}
}

1 |for ie P {
2 L(zi, yi,---)
3|}

» instead of code-bloat-free inlining, loopification
attempts to generate a flat (or shallow) loop directly

from recursive code

» it tries to synthesize hypotheses that the original code

is an affine loop of leaf blocks

» the loopified code may then be vectorized



Results: effect of optimizations

relative performance
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Results: remaining gap to hand-optimized code

3 T

T
task —
omp [
optimized
polly ===
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N
o
o

relative performance (task
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Future outlook of task parallelism

» the goal: offer both programmability and performance

» long way toward achieving acceptable performance on
distributed memory machines. why?

>

>

dynamic load balancing — random traffic
global address space — fine-grain communication

» OK in shared memory today. why not on distributed
memory (at least for now)?

v vV VvV VY

checking errors and completion everywhere

doing mutual exclusion everywhere

no hardware-prefetching analog

or lack of bandwidth to tolerate random traffic and
aggressive prefetching

Thank you for listening

¢

0



	Intra-node Task Parallelism
	Task Parallelism in Distributed Memory
	Need Good Performance Analysis Tools
	Compiler Optimizations and Vectorization
	Concluding Remarks

